
1

Evolution of Ethernet: CSMA/CD

to TRILL

Radia Perlman
Intel Labs

radia.perlman@intel.com
radia@alum.mit.edu

2

Evolution of Ethernet: CSMA/CD

to TRILL

And other Networking Topics

Radia Perlman
Intel Labs

radia.perlman@intel.com
radia@alum.mit.edu

Networking is really confusing

• What exactly is Ethernet?

• Why do we need both Ethernet and IP?

• What is this whole ―layer 3 vs layer 2‖ thing

about?

3

4

Perlman’s View of Network

Layers

• Based on OSI layers…

5

Perlman’s View of Network

Layers

• Layer 1: Physical

6

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

7

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

8

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: ―Transport‖: end-to-end

reordering, error recovery

9

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: ―Transport‖: end-to-end

reordering, error recovery

• Layers 5 and above:

10

Perlman’s View of Network

Layers

• Layer 1: Physical

• Layer 2: Data Link: Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: ―Transport‖: end-to-end

reordering, error recovery

• Layers 5 and above: boring!

11

Definitions

• Repeater: layer 1 relay

12

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

13

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

14

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

15

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

– The ―right‖ definition: layer 2 is neighbor-

neighbor. ―Relays‖ should only be in layer 3!

16

Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

• True definition of a layer n protocol:

Anything designed by a committee whose

charter is to design a layer n protocol

Things I’ll talk about

• Addressing (hierarchical, flat)

• Switch forwarding tables based on

– Destination address

• Direct lookup

• Hash

• Longest prefix match

– Path

• Creating forwarding tables (central, distributed)

17

Address Issues

• Name, ID, Address, Route

18

Address Issues

• Name, ID, Address, Route

– Name: human-friendly, location-independent

– ID: computer-friendly, location-independent

– Address

• If dest moves, address changes

• But same address works from any source

– Route

• Dependent on location of source as well as dest!

19

Flat vs Hierarchical Addresses

• Flat: address doesn’t change when you

move (so I’d call it an ID, but oh well…)

• Hierarchical: something like

– Planet, country, state, city

• Ethernet addresses are flat, IP addresses are

hierarchical

20

So, what’s the difference between

layer 2 and layer 3?

21

Original Ethernet Invention

• CSMA/CD

– CS: carrier sense

• Don’t interrupt if someone’s talking!

– MA: multiple access

• You are sharing the airwaves so be polite!

– CD: collision detect

• If someone else starts talking while you are talking,

stop talking—people can’t listen to multiple people

talking at once!

22

CSMA/CD

• Lots of papers about limited ―goodput‖ due

to collisions

• Limited scalability (distance, number of

stations)

23

CSMA/CD

• Lots of papers about limited ―goodput‖ due

to collisions

• Limited scalability (distance, number of

stations)

• But Ethernet hasn’t been CSMA/CD for

years!

24

25

Layer 3 (e.g., IPv4, IPv6, DECnet,

Appletalk, IPX, etc.)

• Put source, destination, hop count on packet

• Then along came ―the EtherNET‖
– rethink routing algorithm a bit, but it’s a link not a

NET!

• The world got confused. Built on layer 2

• I tried to argue: ―But you might want to talk from

one Ethernet to another!‖

• ―Which will win? Ethernet or DECnet?‖

26

Layer 3 packet

data

Layer 3 header

source dest hops

27

Ethernet packet

data

Ethernet header

source dest

Autoconfiguration

• Ethernet philosophy: plug and play

• Worst part of configuration: addresses

• They wanted each device to have its own

address

• Decided on 6 byte addresses, even though

the technology as originally invented was

only for connecting, say, 1000 nodes

28

Unique addresses

• Two proposals

– Pick an address at random

– Administer them centrally (now done by IEEE)

and have manufacturer created devices with

permanent addresses in ROM

29

30

Ethernet (802) addresses

• Assigned in blocks of 224

• Given 23-bit constant (OUI) plus g/i bit

• all 1’s intended to mean ―broadcast‖

OUI

global/local admin

group/individual

Ethernet addresses

• They look hierarchical

• But they are flat

• The hierarchy is only for ease of assignment

31

32

It’s easy to confuse ―Ethernet‖ with

―network‖

• Both are multiaccess clouds

• But Ethernet does not scale. It can’t replace IP as

the Internet Protocol

– Flat addresses

– No hop count

– Missing additional protocols (such as neighbor

discovery)

– Perhaps missing features (such as fragmentation, error

messages, congestion feedback)

33

So where did Ethernet bridges

come from?

34

When I started

• Layer 3 had source, destination addresses

• Layer 2 was just point-to-point links

(mostly)

35

Then…Ethernet

36

Ethernet…

• Should have been called ―Etherlink‖

• New kind of link, requiring some

adjustment to the routing protocol, e.g.,

– Routing algorithm overhead proportional to

number of links

– So, for link state routing, I created

―pseudonodes‖

37

Instead of: Use pseudonode

38

Problem Statement

Need something that will sit between two Ethernets, and

let a station on one Ethernet talk to another

A C

Why routers won’t work

• Router knows about one layer 3 protocol

• And the endnode has to implement that!

39

Constraint at that time for ―magic

box at layer 2‖

• Must not modify Ethernet packet in any

way

• Hard limit on size of packet

40

41

Basic idea

• Listen promiscuously

• Learn location of source address based on

source address in packet and port from

which packet received

• Forward based on learned location of

destination

42

What’s different between this and

a repeater?

• no collisions

• with learning, can use more aggregate

bandwidth than on any one link

– Repeater forwards immediately…can’t look at

destination address before forwarding

• no artifacts of LAN technology (# of

stations in ring, distance of CSMA/CD)

43

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S

44

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S

45

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S

46

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S

47

But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S

48

What to do about loops?

• Just say ―don’t do that‖

• Or, spanning tree algorithm

– Bridges gossip amongst themselves

– Compute loop-free subset

– Forward data on the spanning tree

– Other links are backups

49

Algorhyme

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree which must be sure to span
So packets can reach every LAN.

First the Root must be selected
By ID it is elected.

Least cost paths from Root are traced
In the tree these paths are placed.

A mesh is made by folks like me.
Then bridges find a spanning tree.

Radia Perlman

50

93

4

11
7

10

14

2
5

6

A

X

51

93

4

11
7

10

14

2
5

6

A

X

52

93

4

11
7

10

14

2
5

6

A

X

53

Bother with spanning tree?

• Maybe just tell customers ―don’t do loops‖

• First bridge sold...

54

First Bridge Sold

A C

How spanning tree works

• Each bridge starts out with an ID (e.g., a

MAC address it owns)

• Bridge B transmits spanning tree message:

– ID of who B thinks is Root

– Cost from B to Root

– B’s ID

– Other stuff (e.g., port, spanning tree

parameters)

55

Remember ―best‖ spanning tree

message on each port p

• Best is numerically smallest

– Root ID | cost to Root | ID of X’mitter | port ID

• If you are the Root, best is

– Your ID | 0 | your ID | port ID

• So memory requirement for switch S to run

spanning tree is only size of spanning tree

message (about 50 bytes) * number of ports

on S
56

Pick the Root

• Choose numerically smallest root ID from

– Received spanning tree messages

– Your own ID

57

Calculate your cost to Root

• 0 if you think you are the Root

• Else, smallest {cost of port p + cost reported

by neighbor on that port}

58

Which ports are in the tree?

• Ports on which your spanning tree message

is ―best‖

• Single one that is your best path to Root

59

Why is this a tree?

• Tree needs:

– Unique Root

– Every node (other than Root) needs unique parent

• Consider two types of nodes: links, and bridges

• Unique parent of link: bridge with best spanning tree

message

• Unique parent of bridge: port giving best path to Root

60

A few extra interesting things

• Example things you can configure

– Bridge priority

– Link cost

– Max-age

• Why this protocol is unstable if bridges

cannot keep up with wire speed on receive

61

62

So Bridges were a kludge,

digging out of a bad decision

• Why are they so popular?

– plug and play

– simplicity

– high performance

• Will they go away?

– because of idiosyncracy of IP, need it for lower

layer.

63

Note some things about bridges

• Certainly don’t get optimal

source/destination paths

• Temporary loops are a disaster

– No hop count

– Exponential proliferation

• Inherently unstable

• But they are wonderfully plug-and-play

64

Switches

• Ethernet used to be bus

• Easier to wire, more robust if star (one huge

multiport repeater with pt-to-pt links

• If store and forward rather than repeater,

and with learning, more aggregate

bandwidth

• Can cascade devices…do spanning tree

• We’re reinvented the bridge!

65

Review

Destination address

Source address

data

66

When I started

• Layer 3 had source, destination addresses

• Layer 2 was just point-to-point links

(mostly)

• If layer 2 is multiaccess, then need two

headers:

– Layer 3 has ultimate source, destination

– Layer 2 has next hop source, destination

67

Hdrs inside hdrs

R1

R2 R3
S D

As transmitted by S? (L2 hdr, L3 hdr)

As transmitted by R1?

As received by D?

68

Hdrs inside hdrs

R1

R2 R3
S D

S:

Layer 2 hdr Layer 3 hdr

Dest=

Source=

Dest=D

Source=S

69

Hdrs inside hdrs

R1

R2 R3
S D

R1:

Layer 2 hdr Layer 3 hdr

Dest=

Source=

Dest=D

Source=S

70

Hdrs inside hdrs

R1

R2 R3
S D

R2:

Layer 2 hdr Layer 3 hdr

Dest=D

Source=S

71

Hdrs inside hdrs

R1

R2 R3
S D

R3:

Layer 2 hdr Layer 3 hdr

Dest=

Source=

Dest=D

Source=S

72

What designing ―layer 3‖ meant

• Layer 3 addresses

• Layer 3 packet format (IP, DECnet)

– Source, destination, hop count, …

• A routing algorithm

– Exchange information with your neighbors

– Collectively compute routes with all rtrs

– Compute a forwarding table

73

Network Layer

• connectionless fans designed IPv4, IPv6,

CLNP, IPX, AppleTalk, DECnet

• Connection-oriented reliable fans designed

X.25

• Connection-oriented datagram fans

designed ATM, MPLS

74

Pieces of network layer

• interface to network: addressing, packet

formats, fragmentation and reassembly,

error reports

• routing protocols

• autoconfiguring addresses/nbr

discovery/finding routers

75

Connection-oriented Nets

S

A

R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)

(4,8)=(7,92)

(4,17)=(7,12)

(2,12)=(3,15)

(2,92)=(4,8)

(1,8)=(3,6)

(2,15)=(1,7)
label=8, 92, 8, 6

8

92

8

6

76

Lots of connection-oriented

networks

• X.25: also have sequence number and ack

number in packets (like TCP), and layer 3

guarantees delivery

• ATM: datagram, but fixed size packets (48

bytes data, 5 bytes header)

77

MPLS (multiprotocol label

switching)

• Connectionless, like MPLS, but arbitrary

sized packets

• Add 32-bit hdr on top of IP pkt

– 20 bit ―label‖

– Hop count (hooray!)

78

Hierarchical connections (stacks of

MPLS labels)

R1

R2

S1

S8

S6

S9

S5

S2

S4

S3

D2

D1

D8

D2 D9

D3

D5
D4

Routers in backbone only need to know about

one flow: R1-R2

79

MPLS

• Originally for faster forwarding than

parsing IP header

• later ―traffic engineering‖

• classify pkts based on more than destination

address

80

Connectionless Network Layers

• Destination, source, hop count

• Maybe other stuff

– fragmentation

– options (e.g., source routing)

– error reports

– special service requests (priority, custom routes)

– congestion indication

• Real diff: size of addresses

81

Addresses

• 802 address ―flat‖, though assigned with OUI/rest.

No topological significance

• layer 3 addresses: locator/node : topologically

hierarchical address

– IPv4, IPv6, IPX, AppleTalk: unique ―locator‖

for each link

– CLNP, DECnet: locator ―area‖…whole campus

82

Hierarchy within Locator

• Assume addresses assigned so that within a circle

everything shares a prefix

• Can summarize lots of circles with a shorter prefix

27*
23*

2428*

2*

279* 272*

Hierarchy

• Makes network much more scalable

• Allows forwarding tables to be much

smaller

• But paths are no longer optimal

– Enter circle as soon as possible

– Not necessarily best place for the specific

destination inside the circle

83

Fixed hierarchy vs longest prefix

match

• Fixed: If top portion = yours, route based

on rest

• Longest prefix match: flexible boundaries

• Comparison

– Lookup easier with fixed boundaries

– Longest prefix match allows regions of

different sizes without wasting bits of address

by allocating maximum # of bits at each level

84

85

Address Prefix Routing

• Given destination address, want to find

longest prefix match in forwarding table

• Two basic algorithms

– TRIE

– modified binary search

How to do Longest Prefix search

86

87

TRIE

• Character-by-character search

• ―Character‖ might be single bit

• ―*‖ means match

• remember last time ―*‖ seen

• once nowhere to go, last ―*‖ is longest

prefix match

88

TRIE
items in database:

null string, A, ABC, ABCDEF, ABDQ, AC

{}*

A

A*

B C

AB AC*

C D

ABC* ABD

Q

ABDQ*

D

ABCD
E

ABCDE

F

ABCDEF*

89

Binary search

• Create ranges

• Take each prefix

– pad with 0’s for low order of range

– pad with 1’s for hi order of range

• Sort them

• Find where destination address fits

90

Binary Search

items: {}, A, ABC, ABCDEF, ABDQ, AC

{}

A

ABC

ABCDEF
ABDQ AC

0000

ffff

A000 A111

ABC0 ABCff

ABCDEF0

Forwarding Decision

• Switch makes decision on how to forward

based on:

– Information in packet

– Forwarding table

91

Next topics to discuss

• What is in a forwarding table

• How to create forwarding tables

• How to do address lookup

92

What’s in a forwarding table

• Flat destination, small (like TRILL)

– Direct lookup  {output ports}

• Flat destination, large (like Ethernet)

– Hash  {output ports}

• Prefix (like IP)

– ―longest matching prefix‖  {output ports}

• Path (like MPLS)

• ((input port, label)  (output port, new label))

93

Size of forwarding table

• Destination

– O(# of destinations)

• Path-based

– O(# of communicating pairs)

– So..if you want n^2 communicating parties,

forwarding table would be the square!

– And if you want path diversity…exponential!

94

Why did ATM use path-based?

• Assumptions

– # of actively communicating pairs much

smaller than total number of destinations

– OK to have latency to set up path when A first

decides to talk to B

– OK to give ―fast busy signal‖ if some switch

doesn’t have resources for a new connection

95

Why did MPLS use path-based?

• Longest prefix match hard

• So, give neighbor a shorthand

– In the future, when you forward that kind of

packet to me, use this label

96

Why did MPLS use path-based?

• Longest prefix match hard

• So, give neighbor a shorthand

– In the future, when you forward that kind of

packet to me, use this label

• Would have been better to be dest-based

• But what about traffic engineering?

– Dest-based can still lock down some paths:

have a few special ―destinations‖ for fixed path

97

Where does forwarding table

come from?

• Distributed algorithm

• Configured

• Central fabric manager

98

99

New topic: Routing Algorithms

100

Distributed Routing Protocols

• Rtrs exchange control info

• Use it to calculate forwarding table

• Two basic types

– distance vector

– link state

101

Distance Vector

• Know

– your own ID

– how many cables hanging off your box

– cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

102

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

103

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

104

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

105

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

106

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

107

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j

cost 3

cost 2

cost 2

cost 7

19

n

3 ?

j ?

?

?

108

Looping Problem

A B C

109

Looping Problem

A B C

012
Cost to C

110

Looping Problem

A B C

012
Cost to C

direction

towards C
direction

towards C

111

Looping Problem

A B C

012
Cost to C

What is B’s cost to C now?

112

Looping Problem

A B C

012
Cost to C

3

113

Looping Problem

A B C

012
Cost to C

3

direction

towards C
direction

towards C

114

Looping Problem

A B C

012
Cost to C

34

direction

towards C
direction

towards C

115

Looping Problem

A B C

012
Cost to C

34

5

direction

towards C
direction

towards C

116

Looping Problem

worse with high connectivity

Q Z B A C N M V

H

117

Split Horizon: one of several

optimizations
Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

A B

C

D

118

Link State Routing

• meet nbrs

• Construct Link State Packet (LSP)

– who you are

– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (―a miracle occurs‖)

• Store latest LSP from each rtr

• Compute Routes (breadth first, i.e., ―shortest path‖

first—well known and efficient algorithm)

119

A B C

D E F

G

6 2
5

1

212

2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

120

Computing Routes

• Edsgar Dijkstra’s algorithm:
– calculate tree of shortest paths from self to each

– also calculate cost from self to each

– Algorithm:

• step 0: put (SELF, 0) on tree

• step 1: look at LSP of node (N,c) just put on tree. If

for any nbr K, this is best path so far to K, put (K,

c+dist(N,K)) on tree, child of N, with dotted line

• step 2: make dotted line with smallest cost solid, go

to step 1

121

Look at LSP of new tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

122

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

123

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)

E(4) G(3)

124

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(6) G(3)

125

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

126

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

127

Look at LSP of newest tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

128

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

129

Look at newest tree node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

130

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

131

Look at newest node’s LSP

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)
A(8)

D(5)

A(7)

132

Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)

133

We’re done!

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)

ARPANET: first link state

protocol: unstable!
• Their algorithm for flooding link state

packets was unstable

• Sounds simple:

– LSP has sequence number

– R2 rcvs LSP from source S, seq # x

– R2 has LSP from S with seq # y

– If x > y, overwrite and flood, else discard

134

Arithmetic in circular space

135

x

>x

<x

x < y < z

136

x

y

z

137

ARPANET disaster

x

y

z

Diagnosing and Fixing the Net

• Luck!

138

Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one

place

139

Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one

place

• Tried rebooting their router…didn’t help

140

Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one

place

• Tried rebooting their router…didn’t help

• Did core dump…queue filled with LSPs

from ―Fred‖, with sequence #s x, y, z

141

Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one

place

• Tried rebooting their router…didn’t help

• Did core dump…queue filled with LSPs

from ―Fred‖, with sequence #s x, y, z

• How to fix?

142

143

Routing Robustness

• ―self-stabilizing‖ link state protocol…but only

after sick/evil node gone

• My thesis: robust even if some of the routers

currently attached are evil. More than securing the

routing protocol: it deals with packet delivery

Other interesting IS-IS details

• Finding neighbors on a shared medium

– Multicast ―Hello‖, listing who you’ve heard Hellos

from

– X lists Y as neighbor in X’s LSP iff X hears Y’s Hello,

and Y lists X as neighbor in Hello

• How to send LSPs reliably over shared link

– Individual acks could be problematic

– So IS-IS has elected master transmit CSNP periodically

(―complete sequence numbers packet‖), which

summarizes LSP database

144

Other interesting IS-IS details

• Some packets can be too large to fit into a single

Ethernet frame

• Typical IP-style fragmentation requires

– Reassembling before processing

– Retransmitting entire packet if one fragment gets lost

• IS-IS avoids this – carefully encode so each ―fragment‖

can be processed!

– Hello neighbor list: sort neighbors, ―this fragment contains nbrs

493 through 875‖

– CSNP: ―this fragment covers LSPs with ID x through y‖

145

146

Distance vector vs link state

• Memory: distance vector wins (but memory is

cheap)

• Computation: debatable

• Simplicity of coding: simple distance vector wins.

Complex new-fangled distance vector, no

• Convergence speed: link state

• Functionality: link state; custom routes, mapping

the net, troubleshooting, sabotage-proof routing

147

Specific Routing Protocols

• Interdomain vs Intradomain

• Intradomain:

– link state (OSPF, IS-IS)

– distance vector (RIP)

• Interdomain

– BGP

148

BGP (Border Gateway Protocol)

• ―Policies‖, not just minimize path

• ―Path vector‖: given reported paths to D

from each nbr, and configured preferences,

choose your path to D

– don’t ever route through domain X, or not to D,

or only as last resort

• Other policies: don’t tell nbr about D, or lie

to nbr about D making path look worse

149

Path vector/Distance vector

• Distance vector

– Each router reports to its neighbors {(D,cost)}

– Each router chooses best path based on min
(reported cost to D+link cost to nbr)

• Path vector

– Each rtr R reports {(D,list of AS’s in R’s
chosen path to D)…}

– Each rtr chooses best path based on configured
policies

150

BGP Configuration

• path preference rules

• which nbr to tell about which destinations

• how to ―edit‖ the path when telling nbr N

about prefix P (add fake hops to discourage

N from using you to get to P)

How to create forwarding table

• Configuration, fixed

– Certainly least overhead, if topology isn’t

dynamic

• Distributed vs centralized

– Distributed will react to changes more quickly

151

152

TRILL working group in IETF

• TRILL= TRansparent Interconnection of
Lots of Links

• Use layer 3 routing, and encapsulate with
a civilized header

• But still look like a bridge from the
outside

153

Goal

• Design so that change can be incremental

• With TRILL, replace any subset of bridges

with RBridges

– still looks to IP like one giant Ethernet

– the more bridges you replace with RBridges,

better bandwidth utilization, more stability

154

Basic TRILL concept

R7

R1

R3

R4

R6

R2

R5

a

c

Basic TRILL concept

• TRILL switches find each other (perhaps with

bridges in between)

• Calculate paths to other TRILL switches

• First TRILL switch tunnels to last TRILL switch

• Reason for extra header:

– Forwarding table in TRILL switches just size of

of TRILL switches

– Layer 3-like header (hop count)

– Small, easy to look up, addresses
155

156

Run link state protocol

• So all the RBridges know how to reach all

the other RBridges

• But don’t know anything about endnodes

157

Why link state?

• Since all switches know the complete

topology, easy to compute lots of trees

deterministically (we’ll get to that later)

• Easy to piggyback ―nickname allocation

protocol‖ (we’ll get to that later)

158

Routing inside campus

• First RB encapsulates to last RB

– So header is ―safe‖ (has hop count)

– Inner RBridges only need to know how to reach

destination RBridge

• Still need tree for unknown/multicast

– But don’t need spanning tree protocol –

compute tree(s) deterministically from the link

state database

159

Details

• What the encapsulated packet looks like

• How R1 knows that R2 is the correct ―last

RBridge‖

160

Encapsulated Frame

(Ethernet)

outer header TRILL header original frame

dest (nexthop)

srce (Xmitter)

Ethertype=TRILL

first RBridge

last RBridge

TTL

TRILL header specifies RBridges with 2-byte nicknames

161

2-byte Nicknames

• Saves hdr room, faster fwd’ing

• Dynamically acquired

• Choose unused #, announce in LSP

• If collision, IDs and priorities break tie

• Loser chooses another nickname

• Configured nicknames higher priority

Form network of TRILL switches

• TRILL switches find each other if:

– Directly connected with pt-to-pt

– Both connected to same Ethernet island

• Do ―link state protocol‖ among TRILL

switches to calculate paths to other TRILL

switches

162

163

b

b

b

b

b b

b

T

T

T

T

T
T

T

T

T

T

164

b

b

b

b

b b

b

T

T

T

T

T
T

T

T

T

T

165

b

b

b
T

T

T

T

T
T

T

T

T

T

166

b

b
T

T

T

T

T
T

T

T

T

T

167

T

T

T

T

T
T

T

T

T

T

168

T1

T2

T

T

T
T

T

T

T

T

Note: only one

T must encap/decap

So T1 and T2 must

Find each other and

coordinate

169

How does R1 know that R2 is the

correct ―last RBridge‖?

• If R1 doesn’t, R1 sends packet through a

tree

• When R2 decapsulates, it remembers

(ingress RBridge, source MAC)

Other possibilities

• Configuration of (MAC addresses, location)

into switches

• Directory listing (IP, MAC, switch location)

– Consulted by first switch, or hypervisor, or

VM, or application

– No reason endnode couldn’t encapsulate into

TRILL header, using switch’s nickname as

―first switch‖

170

Directory

• Could act as the DHCP server (knows (IP,

MAC) because it hands them out..can learn

switch location based on encapsulated

DHCP request

• But what if MAC moves? Short DHCP

leases?

• Could remember who requested an entry,

and tell them if info changes

171

172

Use of ―first‖ and ―last‖ RBridge in

TRILL header

• For Unicast, obvious

– Route towards ―last‖ RBridge

– Learn location of source from ―first‖ RBridge

• For Multicast/unknown destination

– Use of ―first‖

• to learn location of source endnode

• to do ―RPF check‖ on multicast

– Use of ―last‖

• To allow first RB to specify a tree

• Campus calculates some number of trees

TRILL and Multicast

• For spreading multicast traffic around,

campus computes several trees

• ―Last TRILL switch‖ field in TRILL header

specifies which tree to send on

• Traffic filtered in the core based on VLAN,

and IP multicast addresses

173

Multiple trees for multicast

174

R1 specifies which tree

(yellow, red, or blue)

R1

175

Algorhyme v2

I hope that we shall one day see
A graph more lovely than a tree.

A graph to boost efficiency
While still configuration-free.

A network where RBridges can
Route packets to their target LAN.

The paths they find, to our elation,
Are least cost paths to destination.

With packet hop counts we now see,
The network need not be loop-free.

RBridges work transparently.
Without a common spanning tree.

Ray Perlner

Other networking topics

176

Some recently-coined buzzwords

• OpenFlow

• Software Defined Networking

177

Latency

178

Latency

• Cut-through vs store-and-forward
– Somewhat complicated by different speed links

– Even if all links same speed, if you interleave packets, a

congested link is the same as a slower-speed link

– You don’t know until the end if there was a bit error, so

you’ll have fragments wandering around

– Note: you can’t start cut-through until you can make a

forwarding decision

179

180

IPv4 data packet
version hdr lnth

TOS

total length

pkt id

offsetdf mf

offset (cont’d)

TTL (time to live)

protocol

hdr checksum

source

destination

2

2

2

4

4

181

IPv6

(4 bits)
TOS

flow label (20 bits)
vers

(8 bits)

payload length next hops remain

source

destination

Another example:

• TCP has a checksum…in the header…

– Can’t start transmitting until you see all the data

182

Large Control Messages

183

What if message is too large to fit

in a link frame?

• Usual technique: use IP fragmentation

184

What if message is too large to fit

in a link frame?

• Usual technique: use IP fragmentation

• Problem

– Can’t process until message is reassembled

– If one fragment is lost, have to retransmit the

entire thing

185

IS-IS trick

• Encode message into pieces, each of which

is self-describing

• Example:

– Hello lists all neighbors…suppose too many?

• Sort them

• Have each Hello list a subset ―neighbors with IDs

between x and y‖

186

Keeping packets in order

• Today’s routers/switches stand on their

head to keep things in order

• Customers would complain if they

reordered

• Because endnode implementations freak out

187

Exploiting parallel paths

188

S

R1a

R1b

R1c

R1d

R1e

R2a

R2b

R2c

R2d

R2e

R3a

R3b

R3c

R3d

R3e

D

How to keep packets in order

• Infiniband:

– forwarding table has one port /destination

– For multiple paths, assign destination multiple

addresses, occupy multiple fwd-tbl entries

• IP/TRILL

– Forwarding table has multiple ports/dest

– Do hash of (source, TCP ports, …) to always choose

same next hop

– IEEE is proposing an ―entropy‖ field. IPv6 ―flow-ID‖

189

What’s the entropy/flow-ID field

for?

• Source (or first switch, or whatever)

computes hash of whatever fields…saves

intermediate switches the work of doing

deep packet parsing

• Source can also diversify its traffic paths if

the source knows which things can be

reordered within its conversation, even if all

packets use the same TCP ports

190

In-order delivery constraint lowers

fabric performance

• Constrains all pkts of flow on same path

• What if the fabric has lots of parallel paths?

• Wouldn’t it be better to let packets exploit

parallel paths, even for the same flow?

• Wouldn’t it be better if a switch could avoid

congested links by choosing a less loaded

―next hop‖?

191

Chicken and Egg Problem

• Switches carefully engineered not to

reorder, because endnode implementations

don’t cope

• Endnode implementations (even TCP,

whose job it was to reorder!) are lazy and

assume fabric keeps order

192

Congestion

193

Congestion

• I was always pleased not to think about it

• Then the ―DEC bit‖

– ―congestion experienced‖

• I was told to put it into the DECnet spec…

194

Network Heresy

• TCP model of congestion is wrong

195

What’s wrong with TCP?

• Years of research assuming flows really long-lived

• Exponential decrease/additive increase of window

size to settle into having n flows share one

bottleneck equally

• Conservative toe-in-water when start so as not to

take more than your share

• If this was ever true, no longer at these speeds

196

What’s wrong with TCP?

• Years of research assuming flows really long-lived

• Exponential decrease/additive increase of window

size to settle into having n flows share one

bottleneck equally

• Conservative toe-in-water when start so as not to

take more than your share

• If this was ever true, no longer at these speeds

• Ironic work-around: open multiple TCP

connections to the same destination!
197

Another solution: backpressure

for ―lossless fabrics‖

• Credit-based flow control

• DCB (data center bridging): pause/resume

• Both do roughly the same thing, but

pause/resume takes more buffers

198

Losslessness is not free

• It requires backpressure

• Which would be OK if there were separate

buffer pools for every flow

• But if there is shared fate (as in ―pause

everything on a link‖ in data center

bridging), then flows will be unnecessarily

slowed – congestion spreading

• It also requires deadlock-free routes
199

Parting words

• This stuff is all fuzzy

• Don’t believe everything you hear

• To be continued (with more jokes)

tomorrow (and during the conference)

200

Questions?

201

