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Networking is really confusing

• What exactly is Ethernet?

• Why do we need both Ethernet and IP?

• What is this whole ―layer 3 vs layer 2‖ thing 

about?
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Perlman’s View of Network 

Layers

• Based on OSI layers…
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Perlman’s View of Network 

Layers

• Layer 1: Physical

• Layer 2: Data Link:  Neighbor-neighbor

• Layer 3: Network: create path, forward

• Layer 4: ―Transport‖: end-to-end 

reordering, error recovery

• Layers 5 and above: boring!
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Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

– The ―right‖ definition: layer 2 is neighbor-

neighbor. ―Relays‖ should only be in layer 3!
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Definitions

• Repeater: layer 1 relay

• Bridge: layer 2 relay

• Router: layer 3 relay

• OK: What is layer 2 vs layer 3?

• True definition of a layer n protocol: 

Anything designed by a committee whose 

charter is to design a layer n protocol



Things I’ll talk about

• Addressing (hierarchical, flat)

• Switch forwarding tables based on

– Destination address

• Direct lookup

• Hash

• Longest prefix match

– Path

• Creating forwarding tables (central, distributed)
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Address Issues

• Name, ID, Address, Route
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Address Issues

• Name, ID, Address, Route

– Name: human-friendly, location-independent

– ID: computer-friendly, location-independent

– Address

• If dest moves, address changes

• But same address works from any source

– Route

• Dependent on location of source as well as dest!
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Flat vs Hierarchical Addresses

• Flat: address doesn’t change when you 

move (so I’d call it an ID, but oh well…)

• Hierarchical: something like

– Planet, country, state, city

• Ethernet addresses are flat, IP addresses are 

hierarchical
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So, what’s the difference between 

layer 2 and layer 3?
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Original Ethernet Invention

• CSMA/CD

– CS: carrier sense

• Don’t interrupt if someone’s talking!

– MA: multiple access

• You are sharing the airwaves so be polite!

– CD: collision detect

• If someone else starts talking while you are talking, 

stop talking—people can’t listen to multiple people 

talking at once!
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CSMA/CD

• Lots of papers about limited ―goodput‖ due 

to collisions

• Limited scalability (distance, number of 

stations)
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CSMA/CD

• Lots of papers about limited ―goodput‖ due 

to collisions

• Limited scalability (distance, number of 

stations)

• But Ethernet hasn’t been CSMA/CD for 

years!
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Layer 3 (e.g., IPv4, IPv6, DECnet, 

Appletalk, IPX, etc.)

• Put source, destination, hop count on packet

• Then along came ―the EtherNET‖
– rethink routing algorithm a bit, but it’s a link not a 

NET!

• The world got confused. Built on layer 2

• I tried to argue: ―But you might want to talk from 

one Ethernet to another!‖

• ―Which will win? Ethernet or DECnet?‖
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Layer 3 packet

data

Layer 3 header

source dest hops
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Ethernet packet

data

Ethernet header

source dest



Autoconfiguration

• Ethernet philosophy: plug and play

• Worst part of configuration: addresses

• They wanted each device to have its own 

address

• Decided on 6 byte addresses, even though 

the technology as originally invented was 

only for connecting, say, 1000 nodes
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Unique addresses

• Two proposals

– Pick an address at random

– Administer them centrally (now done by IEEE) 

and have manufacturer created devices with 

permanent addresses in ROM
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Ethernet (802) addresses

• Assigned in blocks of 224

• Given 23-bit constant (OUI) plus g/i bit

• all 1’s intended to mean ―broadcast‖

OUI

global/local admin

group/individual



Ethernet addresses

• They look hierarchical

• But they are flat

• The hierarchy is only for ease of assignment
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It’s easy to confuse ―Ethernet‖ with 

―network‖

• Both are multiaccess clouds

• But Ethernet does not scale. It can’t replace IP as 

the Internet Protocol

– Flat addresses

– No hop count

– Missing additional protocols (such as neighbor 

discovery)

– Perhaps missing features (such as fragmentation, error 

messages, congestion feedback)
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So where did Ethernet bridges 

come from?
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When I started

• Layer 3 had source, destination addresses

• Layer 2 was just point-to-point links 

(mostly)



35

Then…Ethernet
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Ethernet…

• Should have been called ―Etherlink‖

• New kind of link, requiring some 

adjustment to the routing protocol, e.g.,

– Routing algorithm overhead proportional to 

number of links

– So, for link state routing, I created 

―pseudonodes‖
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Instead of: Use pseudonode
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Problem Statement

Need something that will sit between two Ethernets, and

let a station on one Ethernet talk to another

A C



Why routers won’t work

• Router knows about one layer 3 protocol

• And the endnode has to implement that!
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Constraint at that time for ―magic 

box at layer 2‖

• Must not modify Ethernet packet in any 

way

• Hard limit on size of packet
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Basic idea

• Listen promiscuously

• Learn location of source address based on 

source address in packet and port from 

which packet received

• Forward based on learned location of 

destination
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What’s different between this and 

a repeater?

• no collisions

• with learning, can use more aggregate 

bandwidth than on any one link

– Repeater forwards immediately…can’t look at 

destination address before forwarding

• no artifacts of LAN technology (# of 

stations in ring, distance of CSMA/CD)
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But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S
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But loops are a disaster

• No hop count

• Exponential proliferation

B1 B2 B3

S
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What to do about loops?

• Just say ―don’t do that‖

• Or, spanning tree algorithm

– Bridges gossip amongst themselves

– Compute loop-free subset

– Forward data on the spanning tree

– Other links are backups
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Algorhyme

I think that I shall never see
A graph more lovely than a tree.

A tree whose crucial property
Is loop-free connectivity.

A tree which must be sure to span
So packets can reach every LAN.

First the Root must be selected
By ID it is elected.

Least cost paths from Root are traced
In the tree these paths are placed.

A mesh is made by folks like me.
Then bridges find a spanning tree.

Radia Perlman
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Bother with spanning tree?

• Maybe just tell customers ―don’t do loops‖

• First bridge sold...
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First Bridge Sold

A C



How spanning tree works

• Each bridge starts out with an ID (e.g., a 

MAC address it owns)

• Bridge B transmits spanning tree message:

– ID of who B thinks is Root

– Cost from B to Root

– B’s ID

– Other stuff (e.g., port, spanning tree 

parameters)
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Remember ―best‖ spanning tree 

message on each port p

• Best is numerically smallest

– Root ID | cost to Root | ID of X’mitter | port ID

• If you are the Root, best is

– Your ID | 0 | your ID | port ID

• So memory requirement for switch S to run 

spanning tree is only size of spanning tree 

message (about 50 bytes) * number of ports 

on S
56



Pick the Root

• Choose numerically smallest root ID from

– Received spanning tree messages

– Your own ID
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Calculate your cost to Root

• 0 if you think you are the Root

• Else, smallest {cost of port p + cost reported 

by neighbor on that port}
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Which ports are in the tree?

• Ports on which your spanning tree message 

is ―best‖

• Single one that is your best path to Root
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Why is this a tree?

• Tree needs:

– Unique Root

– Every node (other than Root) needs unique parent

• Consider two types of nodes: links, and bridges

• Unique parent of link: bridge with best spanning tree 

message

• Unique parent of bridge: port giving best path to Root
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A few extra interesting things

• Example things you can configure

– Bridge priority

– Link cost

– Max-age

• Why this protocol is unstable if bridges 

cannot keep up with wire speed on receive

61



62

So Bridges were a kludge, 

digging out of a bad decision

• Why are they so popular?

– plug and play

– simplicity

– high performance

• Will they go away?

– because of idiosyncracy of IP, need it for lower 

layer. 
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Note some things about bridges

• Certainly don’t get optimal 

source/destination paths

• Temporary loops are a disaster

– No hop count

– Exponential proliferation

• Inherently unstable

• But they are wonderfully plug-and-play



64

Switches

• Ethernet used to be bus

• Easier to wire, more robust if star (one huge 

multiport repeater with pt-to-pt links

• If store and forward rather than repeater, 

and with learning, more aggregate 

bandwidth

• Can cascade devices…do spanning tree

• We’re reinvented the bridge!
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Review

Destination address

Source address

data
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When I started

• Layer 3 had source, destination addresses

• Layer 2 was just point-to-point links 

(mostly)

• If layer 2 is multiaccess, then need two 

headers:

– Layer 3 has ultimate source, destination

– Layer 2 has next hop source, destination
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Hdrs inside hdrs

R1

R2 R3
S D

As transmitted by S? (L2 hdr, L3 hdr)

As transmitted by R1?

As received by D?
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Hdrs inside hdrs

R1

R2 R3
S D

S:

Layer 2 hdr Layer 3 hdr

Dest=

Source=

Dest=D

Source=S
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Hdrs inside hdrs

R1

R2 R3
S D

R1:
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Dest=D

Source=S



70

Hdrs inside hdrs

R1

R2 R3
S D

R2:

Layer 2 hdr Layer 3 hdr

Dest=D

Source=S
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Hdrs inside hdrs

R1

R2 R3
S D

R3:

Layer 2 hdr Layer 3 hdr

Dest=

Source=

Dest=D

Source=S
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What designing ―layer 3‖ meant

• Layer 3 addresses

• Layer 3 packet format (IP, DECnet)

– Source, destination, hop count, …

• A routing algorithm

– Exchange information with your neighbors

– Collectively compute routes with all rtrs

– Compute a forwarding table
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Network Layer

• connectionless fans designed IPv4, IPv6, 

CLNP, IPX, AppleTalk, DECnet

• Connection-oriented reliable fans designed 

X.25

• Connection-oriented datagram fans 

designed ATM, MPLS
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Pieces of network layer

• interface to network: addressing, packet 

formats, fragmentation and reassembly, 

error reports

• routing protocols

• autoconfiguring addresses/nbr 

discovery/finding routers
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Connection-oriented Nets

S

A

R1

R2

R3

R4

R5

D

3

4

7

2

4

3

1

2

3

(3,51)=(7,21)

(4,8)=(7,92)

(4,17)=(7,12)

(2,12)=(3,15)

(2,92)=(4,8)

(1,8)=(3,6)

(2,15)=(1,7)
label=8, 92, 8, 6

8

92

8

6
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Lots of connection-oriented 

networks

• X.25: also have sequence number and ack 

number in packets (like TCP), and layer 3 

guarantees delivery

• ATM: datagram, but fixed size packets (48 

bytes data, 5 bytes header)
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MPLS (multiprotocol label 

switching)

• Connectionless, like MPLS, but arbitrary 

sized packets

• Add 32-bit hdr on top of IP pkt

– 20 bit ―label‖

– Hop count (hooray!)
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Hierarchical connections (stacks of 

MPLS labels)

R1

R2

S1

S8

S6

S9

S5

S2

S4

S3

D2

D1

D8

D2 D9

D3

D5
D4

Routers in backbone only need to know about

one flow: R1-R2
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MPLS

• Originally for faster forwarding than 

parsing IP header

• later ―traffic engineering‖

• classify pkts based on more than destination 

address
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Connectionless Network Layers

• Destination, source, hop count

• Maybe other stuff

– fragmentation

– options (e.g., source routing)

– error reports

– special service requests (priority, custom routes)

– congestion indication

• Real diff: size of addresses
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Addresses

• 802 address ―flat‖, though assigned with OUI/rest. 

No topological significance

• layer 3 addresses: locator/node : topologically 

hierarchical address

– IPv4, IPv6, IPX, AppleTalk: unique ―locator‖ 

for each link

– CLNP, DECnet: locator ―area‖…whole campus
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Hierarchy within Locator

• Assume addresses assigned so that within a circle 

everything shares a prefix

• Can summarize lots of circles with a shorter prefix

27*
23*

2428*

2*

279* 272*



Hierarchy

• Makes network much more scalable

• Allows forwarding tables to be much 

smaller

• But paths are no longer optimal

– Enter circle as soon as possible

– Not necessarily best place for the specific 

destination inside the circle
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Fixed hierarchy vs longest prefix 

match

• Fixed:  If top portion = yours, route based 

on rest

• Longest prefix match: flexible boundaries

• Comparison

– Lookup easier with fixed boundaries

– Longest prefix match allows regions of 

different sizes without wasting bits of address 

by allocating maximum # of bits at each level
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Address Prefix Routing

• Given destination address, want to find 

longest prefix match in forwarding table

• Two basic algorithms

– TRIE

– modified binary search



How to do Longest Prefix search
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TRIE

• Character-by-character search

• ―Character‖ might be single bit

• ―*‖ means match

• remember last time ―*‖ seen

• once nowhere to go, last ―*‖ is longest 

prefix match
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TRIE
items in database: 

null string, A, ABC, ABCDEF, ABDQ, AC

{}*

A

A*

B C

AB AC*

C D

ABC* ABD

Q

ABDQ*

D

ABCD
E

ABCDE

F

ABCDEF*
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Binary search

• Create ranges

• Take each prefix

– pad with 0’s for low order of range

– pad with 1’s for hi order of range

• Sort them

• Find where destination address fits
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Binary Search

items: {}, A, ABC, ABCDEF, ABDQ, AC

{}

A

ABC

ABCDEF
ABDQ AC

0000

ffff

A000 A111

ABC0 ABCff

ABCDEF0



Forwarding Decision

• Switch makes decision on how to forward 

based on:

– Information in packet

– Forwarding table
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Next topics to discuss

• What is in a forwarding table

• How to create forwarding tables

• How to do address lookup
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What’s in a forwarding table

• Flat destination, small (like TRILL)

– Direct lookup  {output ports}

• Flat destination, large (like Ethernet)

– Hash  {output ports}

• Prefix (like IP)

– ―longest matching prefix‖  {output ports}

• Path (like MPLS)

• ((input port, label)  (output port, new label))
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Size of forwarding table

• Destination

– O(# of destinations)

• Path-based

– O(# of communicating pairs)

– So..if you want n^2 communicating parties, 

forwarding table would be the square!

– And if you want path diversity…exponential!
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Why did ATM use path-based?

• Assumptions

– # of actively communicating pairs much 

smaller than total number of destinations

– OK to have latency to set up path when A first 

decides to talk to B

– OK to give ―fast busy signal‖ if some switch 

doesn’t have resources for a new connection
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Why did MPLS use path-based?

• Longest prefix match hard

• So, give neighbor a shorthand

– In the future, when you forward that kind of 

packet to me, use this label
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Why did MPLS use path-based?

• Longest prefix match hard

• So, give neighbor a shorthand

– In the future, when you forward that kind of 

packet to me, use this label

• Would have been better to be dest-based

• But what about traffic engineering?

– Dest-based can still lock down some paths: 

have a few special ―destinations‖ for fixed path
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Where does forwarding table 

come from?

• Distributed algorithm

• Configured

• Central fabric manager
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New topic: Routing Algorithms
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Distributed Routing Protocols

• Rtrs exchange control info

• Use it to calculate forwarding table

• Two basic types

– distance vector

– link state
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Distance Vector

• Know

– your own ID

– how many cables hanging off your box

– cost, for each cable, of getting to nbr

j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖
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j

k

m

n

cost 3

cost 2

cost 2

cost 7I am ―4‖

distance vector rcv’d from cable j

distance vector rcv’d from cable k

distance vector rcv’d from cable m

distance vector rcv’d from cable n

your own calculated distance vector

your own calculated forwarding table

12 3 15 3 12 5 3 18 0 7 15

5 8 3 2 10 7 4 20 5 0 15

0 5 3 2 19 9 5 22 2 4 7

6 2 0 7 8 5 118 12 3 2

2

m

6

j

5

m

0

0

12

k

8

j

6

k/j
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cost 7

19

n

3 ?

j ?

?

?
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Looping Problem

A B C
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A B C

012
Cost to C
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Looping Problem

A B C

012
Cost to C

direction

towards C
direction

towards C
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Looping Problem

A B C

012
Cost to C

What is B’s cost to C now?
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Looping Problem

A B C

012
Cost to C

3
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Looping Problem

A B C

012
Cost to C

3

direction

towards C
direction

towards C
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Looping Problem

A B C

012
Cost to C

34

direction

towards C
direction

towards C
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Looping Problem

A B C

012
Cost to C

34

5

direction

towards C
direction

towards C
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Looping Problem

worse with high connectivity

Q Z B A C N M V

H
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Split Horizon: one of several 

optimizations
Don’t tell neighbor N you can reach D if you’d forward to D through N

A B C

A B

C

D
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Link State Routing

• meet nbrs

• Construct Link State Packet (LSP)

– who you are

– list of (nbr, cost) pairs

• Broadcast LSPs to all rtrs (―a miracle occurs‖)

• Store latest LSP from each rtr

• Compute Routes (breadth first, i.e., ―shortest path‖ 

first—well known and efficient algorithm)
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A B C

D E F

G

6 2
5

1

212

2 4

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1
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Computing Routes

• Edsgar Dijkstra’s algorithm:
– calculate tree of shortest paths from self to each

– also calculate cost from self to each

– Algorithm:

• step 0: put (SELF, 0) on tree

• step 1: look at LSP of node (N,c) just put on tree. If 

for any nbr K, this is best path so far to K, put (K, 

c+dist(N,K)) on tree, child of N, with dotted line

• step 2: make dotted line with smallest cost solid, go 

to step 1
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Look at LSP of new tree node

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)
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Make shortest TENT solid

A
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D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

G(5)



123

Look at LSP of newest tree node
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Make shortest TENT solid
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Look at LSP of newest tree node
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Make shortest TENT solid
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Look at LSP of newest tree node
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Look at newest tree node’s LSP
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Look at newest node’s LSP
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Make shortest TENT solid

A

B/6

D/2

B

A/6

C/2

E/1

C

B/2

F/2

G/5

D

A/2

E/2

E

B/1

D/2

F/4

F

C/2

E/4

G/1

G

C/5

F/1

C(0)

B(2)
F(2)

E(3) G(3)

D(5)

A(7)



133

We’re done!
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ARPANET: first link state 

protocol: unstable!
• Their algorithm for flooding link state 

packets was unstable

• Sounds simple:

– LSP has sequence number

– R2 rcvs LSP from source S, seq # x

– R2 has LSP from S with seq # y

– If x > y, overwrite and flood, else discard
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Arithmetic in circular space
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x

>x

<x



x < y < z
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ARPANET disaster

x

y

z



Diagnosing and Fixing the Net

• Luck!
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Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one 

place

• Tried rebooting their router…didn’t help

• Did core dump…queue filled with LSPs 

from ―Fred‖, with sequence #s x, y, z
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Diagnosing and Fixing the Net

• Luck!

• Network ―didn’t work‖: managed from one 

place

• Tried rebooting their router…didn’t help

• Did core dump…queue filled with LSPs 

from ―Fred‖, with sequence #s x, y, z

• How to fix?
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Routing Robustness

• ―self-stabilizing‖ link state protocol…but only 

after sick/evil node gone

• My thesis: robust even if some of the routers 

currently attached are evil. More than securing the 

routing protocol: it deals with packet delivery



Other interesting IS-IS details

• Finding neighbors on a shared medium

– Multicast ―Hello‖, listing who you’ve heard Hellos 

from

– X lists Y as neighbor in X’s LSP iff X hears Y’s Hello, 

and Y lists X as neighbor in Hello

• How to send LSPs reliably over shared link

– Individual acks could be problematic

– So IS-IS has elected master transmit CSNP periodically 

(―complete sequence numbers packet‖), which 

summarizes LSP database
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Other interesting IS-IS details

• Some packets can be too large to fit into a single 

Ethernet frame

• Typical IP-style fragmentation requires

– Reassembling before processing

– Retransmitting entire packet if one fragment gets lost

• IS-IS avoids this – carefully encode so each ―fragment‖ 

can be processed!

– Hello neighbor list:  sort neighbors, ―this fragment contains nbrs

493 through 875‖

– CSNP: ―this fragment covers LSPs with ID x through y‖
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Distance vector vs link state

• Memory: distance vector wins (but memory is 

cheap)

• Computation: debatable

• Simplicity of coding: simple distance vector wins. 

Complex new-fangled distance vector, no

• Convergence speed: link state

• Functionality: link state; custom routes, mapping 

the net, troubleshooting, sabotage-proof routing
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Specific Routing Protocols

• Interdomain vs Intradomain

• Intradomain:

– link state (OSPF, IS-IS)

– distance vector (RIP)

• Interdomain

– BGP
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BGP (Border Gateway Protocol)

• ―Policies‖, not just minimize path

• ―Path vector‖: given reported paths to D 

from each nbr, and configured preferences, 

choose your path to D

– don’t ever route through domain X, or not to D, 

or only as last resort

• Other policies: don’t tell nbr about D, or lie 

to nbr about D making path look worse
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Path vector/Distance vector

• Distance vector

– Each router reports to its neighbors {(D,cost)}

– Each router chooses best path based on min 
(reported cost to D+link cost to nbr)

• Path vector

– Each rtr R reports {(D,list of AS’s in R’s 
chosen path to D)…}

– Each rtr chooses best path based on configured 
policies
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BGP Configuration

• path preference rules

• which nbr to tell about which destinations

• how to ―edit‖ the path when telling nbr N 

about prefix P (add fake hops to discourage 

N from using you to get to P)



How to create forwarding table

• Configuration, fixed

– Certainly least overhead, if topology isn’t 

dynamic

• Distributed vs centralized

– Distributed will react to changes more quickly
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TRILL working group in IETF

• TRILL= TRansparent Interconnection of 
Lots of Links

• Use layer 3 routing, and encapsulate with 
a civilized header

• But still look like a bridge from the 
outside
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Goal

• Design so that change can be incremental

• With TRILL, replace any subset of bridges 

with RBridges

– still looks to IP like one giant Ethernet

– the more bridges you replace with RBridges, 

better bandwidth utilization, more stability
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Basic TRILL concept

R7

R1
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Basic TRILL concept

• TRILL switches find each other (perhaps with 

bridges in between)

• Calculate paths to other TRILL switches

• First TRILL switch tunnels to last TRILL switch

• Reason for extra header:

– Forwarding table in TRILL switches just size of 

# of TRILL switches

– Layer 3-like header (hop count)

– Small, easy to look up, addresses
155
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Run link state protocol

• So all the RBridges know how to reach all 

the other RBridges

• But don’t know anything about endnodes



157

Why link state?

• Since all switches know the complete 

topology, easy to compute lots of trees 

deterministically (we’ll get to that later)

• Easy to piggyback ―nickname allocation 

protocol‖ (we’ll get to that later)
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Routing inside campus

• First RB encapsulates to last RB

– So header is ―safe‖ (has hop count)

– Inner RBridges only need to know how to reach 

destination RBridge

• Still need tree for unknown/multicast

– But don’t need spanning tree protocol –

compute tree(s) deterministically from the link 

state database
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Details

• What the encapsulated packet looks like

• How R1 knows that R2 is the correct ―last 

RBridge‖
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Encapsulated Frame

(Ethernet)

outer header TRILL header original frame

dest (nexthop)

srce (Xmitter)

Ethertype=TRILL

first RBridge

last RBridge

TTL

TRILL header specifies RBridges with 2-byte nicknames
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2-byte Nicknames

• Saves hdr room, faster fwd’ing

• Dynamically acquired

• Choose unused #, announce in LSP

• If collision, IDs and priorities break tie

• Loser chooses another nickname

• Configured nicknames higher priority



Form network of TRILL switches

• TRILL switches find each other if:

– Directly connected with pt-to-pt

– Both connected to same Ethernet island

• Do ―link state protocol‖ among TRILL 

switches to calculate paths to other TRILL 

switches
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T1

T2

T

T

T
T

T

T

T

T

Note: only one

T must encap/decap

So T1 and T2 must

Find each other and

coordinate



169

How does R1 know that R2 is the 

correct ―last RBridge‖?

• If R1 doesn’t, R1 sends packet through a 

tree

• When R2 decapsulates, it remembers 

(ingress RBridge, source MAC)



Other possibilities

• Configuration of (MAC addresses, location) 

into switches

• Directory listing (IP, MAC, switch location)

– Consulted by first switch, or hypervisor, or 

VM, or application

– No reason endnode couldn’t encapsulate into 

TRILL header, using switch’s nickname as 

―first switch‖
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Directory

• Could act as the DHCP server (knows (IP, 

MAC) because it hands them out..can learn 

switch location based on encapsulated 

DHCP request

• But what if MAC moves?  Short DHCP 

leases?

• Could remember who requested an entry, 

and tell them if info changes
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Use of ―first‖ and ―last‖ RBridge in 

TRILL header

• For Unicast, obvious

– Route towards ―last‖ RBridge

– Learn location of source from ―first‖ RBridge

• For Multicast/unknown destination

– Use of ―first‖

• to learn location of source endnode

• to do ―RPF check‖ on multicast

– Use of ―last‖

• To allow first RB to specify a tree

• Campus calculates some number of trees



TRILL and Multicast

• For spreading multicast traffic around, 

campus computes several trees

• ―Last TRILL switch‖ field in TRILL header 

specifies which tree to send on

• Traffic filtered in the core based on VLAN, 

and IP multicast addresses
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Multiple trees for multicast

174

R1 specifies which tree

(yellow, red, or blue)

R1
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Algorhyme v2

I hope that we shall one day see
A graph more lovely than a tree.

A graph to boost efficiency
While still configuration-free.

A network where RBridges can
Route packets to their target LAN.

The paths they find, to our elation,
Are least cost paths to destination.

With packet hop counts we now see,
The network need not be loop-free.

RBridges work transparently.
Without a common spanning tree.

Ray Perlner



Other networking topics
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Some recently-coined buzzwords

• OpenFlow

• Software Defined Networking
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Latency

178



Latency

• Cut-through vs store-and-forward
– Somewhat complicated by different speed links

– Even if all links same speed, if you interleave packets, a 

congested link is the same as a slower-speed link

– You don’t know until the end if there was a bit error, so 

you’ll have fragments wandering around

– Note: you can’t start cut-through until you can make a 

forwarding decision
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IPv4 data packet
version hdr lnth

TOS

total length

pkt id

offsetdf   mf

offset (cont’d)

TTL (time to live)

protocol

hdr checksum

source

destination

2

2

2

4

4
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IPv6

(4 bits)
TOS

flow label (20 bits)
vers

(8 bits)

payload length next hops remain

source

destination



Another example:

• TCP has a checksum…in the header…

– Can’t start transmitting until you see all the data
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Large Control Messages
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What if message is too large to fit 

in a link frame?

• Usual technique: use IP fragmentation
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What if message is too large to fit 

in a link frame?

• Usual technique: use IP fragmentation

• Problem

– Can’t process until message is reassembled

– If one fragment is lost, have to retransmit the 

entire thing
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IS-IS trick

• Encode message into pieces, each of which 

is self-describing

• Example:

– Hello lists all neighbors…suppose too many?

• Sort them

• Have each Hello list a subset ―neighbors with IDs 

between x and y‖
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Keeping packets in order

• Today’s routers/switches stand on their 

head to keep things in order

• Customers would complain if they 

reordered

• Because endnode implementations freak out
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Exploiting parallel paths
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How to keep packets in order

• Infiniband:

– forwarding table has one port /destination 

– For multiple paths, assign destination multiple 

addresses, occupy multiple fwd-tbl entries

• IP/TRILL

– Forwarding table has multiple ports/dest

– Do hash of (source, TCP ports, …) to always choose 

same next hop

– IEEE is proposing an ―entropy‖ field.  IPv6 ―flow-ID‖
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What’s the entropy/flow-ID field 

for?

• Source (or first switch, or whatever) 

computes hash of whatever fields…saves 

intermediate switches the work of doing 

deep packet parsing

• Source can also diversify its traffic paths if 

the source knows which things can be 

reordered within its conversation, even if all 

packets use the same TCP ports
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In-order delivery constraint lowers 

fabric performance

• Constrains all pkts of flow on same path

• What if the fabric has lots of parallel paths?

• Wouldn’t it be better to let packets exploit 

parallel paths, even for the same flow?

• Wouldn’t it be better if a switch could avoid 

congested links by choosing a less loaded 

―next hop‖?
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Chicken and Egg Problem

• Switches carefully engineered not to 

reorder, because endnode implementations 

don’t cope

• Endnode implementations (even TCP, 

whose job it was to reorder!) are lazy and 

assume fabric keeps order
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Congestion
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Congestion

• I was always pleased not to think about it

• Then the ―DEC bit‖

– ―congestion experienced‖

• I was told to put it into the DECnet spec…
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Network Heresy

• TCP model of congestion is wrong
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What’s wrong with TCP?

• Years of research assuming flows really long-lived

• Exponential decrease/additive increase of window 

size to settle into having n flows share one 

bottleneck equally

• Conservative toe-in-water when start so as not to 

take more than your share

• If this was ever true, no longer at these speeds
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What’s wrong with TCP?

• Years of research assuming flows really long-lived

• Exponential decrease/additive increase of window 

size to settle into having n flows share one 

bottleneck equally

• Conservative toe-in-water when start so as not to 

take more than your share

• If this was ever true, no longer at these speeds

• Ironic work-around: open multiple TCP 

connections to the same destination!
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Another solution: backpressure 

for ―lossless fabrics‖

• Credit-based flow control

• DCB (data center bridging): pause/resume

• Both do roughly the same thing, but 

pause/resume takes more buffers
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Losslessness is not free

• It requires backpressure

• Which would be OK if there were separate 

buffer pools for every flow

• But if there is shared fate (as in ―pause 

everything on a link‖ in data center 

bridging), then flows will be unnecessarily 

slowed – congestion spreading

• It also requires deadlock-free routes
199



Parting words

• This stuff is all fuzzy

• Don’t believe everything you hear

• To be continued (with more jokes) 

tomorrow (and during the conference)
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Questions?
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